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Software vulnerabilities are everywhere

• High-profile software (nginx, Symantec)
• But also web applications (Paymaxx)

- One-off designs receive little outside
scrutiny

- See a wide range of programmer abilities
(unlike core components such as kernels)

• Also embedded systems (fridge, TV)

• “Internet of things” ?≈ remote exploit of
things

• Fewer and fewer settings where software
security doesn’t matter
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The only solution

The median programmer must build secure systems.
• Sadly, I won’t tell you how to make this happen today, but
• Information flow control (IFC) has made progress towards the goal
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Steps towards the goal

• Allow experts to incorporate third-party code into secure systems
- Achievable if you are willing to use a new operating system (HiStar)
- Compatibility issues make it hard to deploy a new OS

• Allow experts to manage non-experts building secure systems
- Possible if you teach people a new language (Haskell)
- Ideas may be transferable to mainstream languages (e.g.,
JavaScript)

• Allow anyone to hire non-experts to build secure systems
- This is the big open problem
- IFC is a plausible approach, and we have some experience pointing
to the remaining difficulties
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Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Symantec AV (deployed on 200M machines) had remote exploit
• Can the OS provide security despite Symantec’s programmers?

- Prevent leaking contents of private files to network
- Prevent tampering with contents of files
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Example: Anti-virus software

AV
Helper

AV
Scanner
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TTY
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Daemon

/tmp User Data Virus DB Network

• Scanner can write your private data to network
• Prevent scanner from invoking any system call that might send a
network message?
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Example: Anti-virus software
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AV
Scanner
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Daemon

/tmp User Data Virus DB Network

• Scanner can send private data to update daemon
• Update daemon sends data over network

- Can cleverly disguise secrets in order/timing of update requests

• Block IPC & shared memory system calls in scanner?
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Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can write data to world-readable file in /tmp

• Update daemon later reads and discloses file
• Prevent update daemon from using /tmp?
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Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can acquire read locks on virus database
- Encode secret user data by locking various ranges of file

• Update daemon decodes data by detecting locks
- Discloses private data over the network

• Have trusted software copy virus DB for scanner?
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The list goes on

• Scanner can call setproctitle with user data
- Update daemon extracts data by running ps

• Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

• Scanner can relay data through another process
- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data

• Disclose data by modulating free disk space
• Can we ever convince ourselves we’ve covered all possible
communication channels?
- Not without a more systematic approach to the problem
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Background: Information flow control

AV
Scanner User Data

LS

LU
?LU v LSLS v LU v LS

• Every piece of data in the system has a label
• Every process/thread/subject has a label
• Labels are partially ordered by v ("can flow to")
• Example: Scanner (labeled LS ) accesses user file (labeled LU )

- Check permission by comparing LS and LU

- File read? Information flows from file to scanner. Require: LU v LS .
- File write? Information flows in both directions. Require: LU v LS
and LS v LU .
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v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did
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v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

• Conversely, a process that can write to network cannot read the file
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Traditionally labels form static lattice

〈unclassified, ∅〉

〈secret, ∅〉

〈top-secret, ∅〉

〈top-secret, {Nuclear,Crypto}〉

〈secret, {Nuclear}〉 〈secret, {Crypto}〉

〈top-secret, {Nuclear}〉 〈top-secret, {Crypto}〉

L1 L2
means L1 v L2
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Dynamic labels can express per-user policy

L∅

LA w
LB

v

LAB

v w

• E.g., use L∅ for public data, LA for user A’s private data
• If new user B joins web site, introduce new label LB for his data

- A and B cannot read each other’s private data
• Mix A’s and B’s private data? Need label LAB = LA t LB

• But what if A wants to make her data public?
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Decentralized information flow control [Myers]

Sanitize

Lbug

p
User data

LU

Internet

Lnet

Lbug
LU v

Lbug

Lbug 6v Lnet

Lbug vp Lnet

• Privilege p lets one bypass restrictions of Lbug (represented )

• Exercising p loosens label requirements to a pre-order, vp

- Since Lbug vp Lnet, Sanitize process can send result to network

• Idea: Set labels so you understand all use of relevant privileges
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Example privileges

• Consider again the simple two user lattice
• Let a be user A’s privileges
• User A should be allowed to make her own data public
• She can because LA va L∅ and LAB va LB
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Example privileges
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HiStar OS

• Clean-slate OS that makes all information flow explicit
• Key feature: partial declassification privileges

- All other security features built on partial declassification
• Example: user IDs

- Each uid implemented as two privileges, one for reading and one for
writing user’s files

- User’s login shell receives privileges after authentication
• Example: web security

- Each web user is associated with unique privileges
- Ensures Paymaxx-style dump-the-database attacks not possible
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HiStar architecture

Hardware

POSIX

Security checks

AV
he
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an

ne
r

U
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e

Linux
Hardware

Security checks
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SI
X

PO
SI
X

PO
SI
X

AV
he

lp
er

Sc
an
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U
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e

HiStar

• Kernel provides six simple object types
- Simple enough that information flow is unambiguous

• Layer POSIX API as untrusted library on top of kernel
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Web server
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What we learned from HiStar

• Nickolai Zeldovich can secure 1,000,000+ lines of third-party code
- But he is not the median programmer to say the least

• System-wide egalitarian access control is practical
• Dynamic IFC enforcement can avoid implicit flows

- Dynamic IFC was previously through to be inherently insecure
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Why Haskell?

• Haskell is a pure functional langauge
- Functions without side effects do not leak data

• Impure computations have type IO a for some return type a

- Haskell’s “Monad” support lets one to introduce other types like IO

• Idea: introduce a new labeled IO type, LIO, as substitute for IO

- Internally, LIO makes use of IO actions, but only after enforcing IFC
- Type safety and abstraction prevent LIO code from executing raw IO

• Safe Haskell compiler feature enforces type safety & abstraction
- Privileged symbols (ending . . .TCB) are inaccessible from safe code
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Example: Wrapping IO abstractions

• Wrap IO abstractions into generic labeled objects
- blessTCB transforms an IO function into an LIO action on a labeled
version of the same type

- LIO version checks labels before performing action
• E.g., Haskell MVar abstraction provides mutable variables

- LIO version called LMVar merely a wrapped MVar

{-# LANGUAGE Trustworthy #-}
...

type LMVar l a = LObj l (MVar a)

takeLMVar :: Label l => LMVar l a -> LIO l a
takeLMVar = blessTCB "takeLMVar" takeMVar

putLMVar :: Label l => LMVar l a -> a -> LIO l ()
putLMVar = blessTCB "putLMVar" putMVar

...
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Hails: An LIO web framework

• Introduces Model-Policy-View-Controller paradigm
• A Hails server comprises two types of software package

- VCs contain View and Controller logic
- MPs contain Model and Policy logic

• Policies enforced using LIO
- Also isolate spawned programs with Linux namespaces
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GitStar

• Public GitHub-like service supporting private projects
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Simplified GitStar architecture

Code Viewer

S
e
rv

e
rView

Controller

View

Controller

View

Controller

Git-Blog

S
e
rv

e
r View

Controller

View

Controller

View

Controller

Bookmark

S
e
rv

e
r View

Controller

View

Controller

View

Controller

FollowerGitStar

DBI DBI

ViewView

ControllerControllerPolicy

Model

Browser

Splint

ViewView

ControllerControllerPolicy

Model

• Two MPs: GitStar hosts git repos, Follower stores a relationship
between users

• Three different VC apps make use of these MPs
- VCs can be written after the fact w/o permission of MP author
- LIO ensures they cannot misuse data
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What policy looks like

-- Set policy for "users" collection:
collection "users" $ do

-- Set collection label:
access $ do

readers ==> anybody
writers ==> anybody

-- Declare user field as a key:
field "user" key
-- Set document label, given document doc:
document $ \doc -> do

readers ==> anybody
writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:
field "email" $ labeled $ \doc -> do

readers ==> ("user" ‘from‘ doc)
\/ fromList ("friends" ‘from‘ doc)
\/ _Follower

writers ==> anybody

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,
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LearnByHacking
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Three usability data points

1. One high-school student hired at Stanford
2. Four (screened) Brandeis students in Lincoln labs evaluation study
3. Four Stanford students (hired blind, no experience necessary)

[Disclaimer: all programmers compensated in dollars.]
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A few highly subjective conclusions

+ Teaching people Haskell much easier than deploying a new OS
- Libraries, stack overflow, IRC. . . community has critical mass
- People’s willingness to learn new languages may be increasing

+ People generally had an easy time writing VCs
- Which is good because VCs are larger and more numerous than MPs

- Students struggled with policy
- The policy DSL was introduced later, and helped some

- It doesn’t work to prototype an app, then add policy

• We’ve come a long way since HiStar’s labels, which could mystify
even senior systems researchers
- E.g., Stanford team built task management system with rich policies
- #1 challenge is enabling more people to understand, express policy
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Questions

Secure

Computer

Systems

http://www.scs.stanford.edu/
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