Security and the Average Programmer

Silas Boyd-Wickizer, Pablo Buiras*, Daniel Giffin, Stefan Heule,
Eddie Kohler, Amit Levy, David Mazieres, John Mitchell,
Alejandro Russo*, Amy Shen, Deian Stefan, David Terei,

Edward Yang, and Nickolai Zeldovich

Stanford and *Chalmers

Tuesday, April 15, 2014

Software vulnerabilities are everywhere

High-profile software (nginx, Symantec)
But also web applications (Paymaxx)

- One-off designs receive little outside
scrutiny

- See a wide range of programmer abilities
(unlike core components such as kernels)

Also embedded systems (fridge, TV)

“Internet of things” < remote exploit of
things

Fewer and fewer settings where software
security doesn’t matter

2/30

The only solution

—~

s WILL cope
FOR FOoD

The median programmer must build secure systems.
e Sadly, | won't tell you how to make this happen today, but
¢ Information flow control (IFC) has made progress towards the goal

3/30

Steps towards the goal

o Allow experts to incorporate third-party code into secure systems

- Achievable if you are willing to use a new operating system (HiStar)
- Compatibility issues make it hard to deploy a new OS

o Allow experts to manage non-experts building secure systems

- Possible if you teach people a new language (Haskell)

- ldeas may be transferable to mainstream languages (e.g.,
JavaScript)

¢ Allow anyone to hire non-experts to build secure systems

- This is the big open problem

- IFC is a plausible approach, and we have some experience pointing
to the remaining difficulties

4/30

@ Background: Information flow control

@ HiStar
® IFC for Haskell

@ Experience

5/30

Example: Anti-virus software

AV AV User Update
Helper < Scanner —~ TTY Daemon
/tmp | User Data Virus DB Network

e Symantec AV (deployed on 200M machines) had remote exploit
e Can the OS provide security despite Symantec’s programmers?

- Prevent leaking contents of private files to network
- Prevent tampering with contents of files

6/30

Example: Anti-virus software

AV AV User Update
Helper Scanner TTY Daemon

/tmp User Data Virus DB Network

e Scanner can write your private data to network

e Prevent scanner from invoking any system call that might send a
network message?

6/30

Example: Anti-virus software

S

AV AV User Update
Helper Scanner TTY Daemon

I

/tmp | User Data Virus DB Network

e Scanner can send private data to update daemon
¢ Update daemon sends data over network
- Can cleverly disguise secrets in order/timing of update requests

¢ Block IPC & shared memory system calls in scanner?

6/30

Example: Anti-virus software

T

AV AV User Update
Helper Scanner TTY Daemon

I

/tmp User Data Virus DB Network

e Scanner can write data to world-readable file in /tmp
e Update daemon later reads and discloses file

¢ Prevent update daemon from using /tmp?

6/30

Example: Anti-virus software

AV ' User Update
Helper Scanner TTY Daemon
/tmp | User Data Virus DB Network

e Scanner can acquire read locks on virus database

- Encode secret user data by locking various ranges of file
o Update daemon decodes data by detecting locks

- Discloses private data over the network

» Have trusted software copy virus DB for scanner?
6/30

The list goes on

Scanner can call setproctitle with user data
- Update daemon extracts data by running ps

Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

Scanner can relay data through another process

- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data

Disclose data by modulating free disk space

Can we ever convince ourselves we've covered all possible
communication channels?

- Not without a more systematic approach to the problem

7/30

Background: Information flow control

AV
Scanner ¢ ? ’ Use;ﬁ;a.
U
Lg

Every piece of data in the system has a label

Every process/thread/subject has a label

Labels are partially ordered by C ("can flow to")

Example: Scanner (labeled Lg) accesses user file (labeled L)
- Check permission by comparing Lg and Ly

8/30

Background: Information flow control

AV Ly E Ls
Scanner UserDalgy
Ly
Lg

Every piece of data in the system has a label

Every process/thread/subject has a label

Labels are partially ordered by C ("can flow to")

Example: Scanner (labeled Lg) accesses user file (labeled L)

- Check permission by comparing Ls and Ly
- File read? Information flows from file to scanner. Require: Ly C Lg.

8/30

Background: Information flow control

AV LsE Ly C Lg
Scanner > UserDaige
Ly
Lg

Every piece of data in the system has a label

Every process/thread/subject has a label

Labels are partially ordered by C ("can flow to")

Example: Scanner (labeled Lg) accesses user file (labeled L)
- Check permission by comparing Ls and Ly
- File read? Information flows from file to scanner. Require: Ly C Lg.
- File write? Information flows in both directions. Require: Ly C Lg
and Lg C Ly.

8/30

C is transitive

Userdata ~-------------- K- > Internet
LU LU ,Z Lnet Lnet

e Transitivity makes it easier to reason about security

e Example: Label user data so it cannot flow to Internet (Ly £ Lyet)

- Policy holds regardless of what other software does
...S0 you don’t care what the programmer did

9/30

C is transitive

User data Internet
Ly I
net

e Transitivity makes it easier to reason about security

e Example: Label user data so it cannot flow to Internet (Ly £ Lyet)

- Policy holds regardless of what other software does
...S0 you don’t care what the programmer did

e Suppose untrustworthy software labeled Ly, reads user file

9/30

C is transitive

. Loue
User data / #

L U Lbug

Internet

Lnet

e Transitivity makes it easier to reason about security

e Example: Label user data so it cannot flow to Internet (Ly £ Lyet)

- Policy holds regardless of what other software does
..so you don'’t care what the programmer did

e Suppose untrustworthy software labeled Ly, reads user file
- Must have Ly T Ly,

9/30

C is transitive

Lbug Z Lnet

s/
C Lipug)~
User data V ##

L U Lbug

Internet

Lnet

e Transitivity makes it easier to reason about security

e Example: Label user data so it cannot flow to Internet (Ly £ Lyet)
- Policy holds regardless of what other software does
...so you don'’t care what the programmer did
e Suppose untrustworthy software labeled Ly, reads user file

- Must have Ly T Ly,

- Butsince Ly IZ Ly, it follows that Lyyg £ Lies. oo

C is transitive

bugEL

et

e »ha

Lbug

Internet

Lnet

e Transitivity makes it easier to reason about security

e Example: Label user data so it cannot flow to Internet (Ly £ Lyet)

- Policy holds regardless of what other software does
..so you don'’t care what the programmer did

e Conversely, a process that can write to network cannot read the file

9/30

Traditionally labels

form static lattice

(top-secret, {Nuclear, Crypto})

(top-secret, {Nuclear})

~
~

e

(top-secret, {Crypto})

-
-
4

L

(top-secret, ()

e
X
(secret, {Nuclear})

4

-
.
®

~x_

Y

v s

X“ (secret, {Crypto})

7

Ly — Ly
means L1 C Ly

(unclassified, 0))

10/30

Dynamic labels can express per-user policy

\V
N,

e E.g., use L for public data, L4 for user A’s private data

11/30

Dynamic labels can express per-user policy

e E.g., use L for public data, L4 for user A’s private data
¢ If new user B joins web site, introduce new label L for his data
- A and B cannot read each other’s private data

11/30

Dynamic labels can express per-user policy

Lap

< Y
LA/ \LB

Ly

E.g., use Ly for public data, L4 for user A’s private data
If new user B joins web site, introduce new label Lz for his data
- A and B cannot read each other’s private data

e Mix A’s and B’s private data? Need label Lyp = La U Lg

But what if A wants to make her data public?

11/30

Decentralized information flow control [Myers]

Internet

Lnet

Sanitize

Lbug

e Privilege ﬁ? lets one bypass restrictions of Ly, (represented)

12/30

Decentralized information flow control [Myers]

Internet

C'p L“e‘ Lnet

Sanitize

Lbug
e Privilege ﬁ lets one bypass restrictions of Ly, (represented)

e Exercising ﬁ loosens label requirements to a pre-order, C,

- Since Lyug Ty Lnet, Sanitize process can send result to network

12/30

Decentralized information flow control [Myers]

#

Sanitize
Lbug
e Privilege ﬁ lets one bypass restrictions of Ly, (represented)

e Exercising ﬁ loosens label requirements to a pre-order, C,
- Since Lyug Ty Lnet, Sanitize process can send result to network
¢ Idea: Set labels so you understand all use of relevant privileges

12/30

Example privileges

o Consider again the simple two user lattice
e Let a be user A’s privileges

e User A should be allowed to make her own data public

13/30

Example privileges

Consider again the simple two user lattice

Let a be user A’s privileges

User A should be allowed to make her own data public

She can because Ly C, Lyand Lyp T, Lp

13/30

@ Background: Information flow control

@ HiStar
® IFC for Haskell

@ Experience

14/30

Clean-slate OS that makes all information flow explicit

Key feature: partial declassification privileges
- All other security features built on partial declassification

Example: user IDs

- Each uid implemented as two privileges, one for reading and one for
writing user’s files

- User’s login shell receives privileges after authentication

Example: web security

- Each web user is associated with unique privileges
- Ensures Paymaxx-style dump-the-database attacks not possible

15/30

HiStar architecture

@ = @ @ 5 @
AREARE: 5| £ |5
< I 3 < @ 3
>) > o -}
e n =z n
Security checks < < <

%) %) %)

228

POSIX
Security checks
Hardware Hardware
Linux HiStar

e Kernel provides six simple object types
- Simple enough that information flow is unambiguous

o Layer POSIX API as untrusted library on top of kernel

16/30

Web server

310 lines

: 4600 lines RSA

iinid s§| RSAi . k@

User's
browser

300 lines | N'ttPd Application &H
(PDF: 600k L
A
’J:
360 Y User's g:far
lines |~ auth agent

17/30

What we learned from HiStar

¢ Nickolai Zeldovich can secure 1,000,000+ lines of third-party code
- But he is not the median programmer to say the least

e System-wide egalitarian access control is practical

¢ Dynamic IFC enforcement can avoid implicit flows
- Dynamic IFC was previously through to be inherently insecure

18/30

@ Background: Information flow control

@ HiStar
@ IFC for Haskell

@ Experience

19/30

Why Haskell?

Haskell is a pure functional langauge
- Functions without side effects do not leak data

Impure computations have type 10 a for some return type a
- Haskell's “Monad” support lets one to introduce other types like 10

Idea: introduce a new labeled IO type, L10, as substitute for 10

- Internally, LI0 makes use of 10 actions, but only after enforcing IFC
- Type safety and abstraction prevent L10 code from executing raw 10

Safe Haskell compiler feature enforces type safety & abstraction
- Privileged symbols (ending ...TCB) are inaccessible from safe code

20/30

Example: Wrapping IO a

e Wrap 10 abstractions into generic labeled objects

- blessTCB transforms an 10 function into an L10 action on a labeled
version of the same type

- LI0 version checks labels before performing action
e E.g., Haskell mvar abstraction provides mutable variables
- LI0 version called LMvar merely a wrapped Mvar

{-# LANGUAGE Trustworthy #-}

type LMVar 1 a = LObj 1 (MVar a)

takeLMVar :: Label 1 => LMVar 1 a -> LI0O 1 a
takeLMVar = blessTCB "takeLMVar" takeMVar

putLMVar :: Label 1 => LMVar 1 a -> a -> LI0O 1 ()
putLMVar = blessTCB "putLMVar" putMVar

21/30

Hails: An LIO web framework

¢ Introduces Model-Policy-View-Controller paradigm

¢ A Hails server comprises two types of software package

- VCs contain View and Controller logic
- MPs contain Model and Policy logic

¢ Policies enforced using LIO
- Also isolate spawned programs with Linux namespaces

22/30

GitStar

GitStar is a social source code management platform built using the new Hails web framework. GitStar
provides your traditional web-based code hosting site with a twist: Instead of a single codebase,
GitStar is posed of many applications, written by different people, safely operating on your data.
Take a look at the /scs/hails project: the code viewer and wiki are "third-party untrusted” apps! Hails
gives you server-side guarantees, but to prevent leaks from your browser you need to install our

chrome extension.

List Projects

e Public GitHub-like service supporting private projects

23/30

Simplified GitStar architecture

Code Viewer

Bookmark
Viow L ;
—rr ; 'L .
Controller || & 4| Controller
Splint .~
@‘ GitStar

(Sioio |

—

!

e Two MPs: GitStar hosts git repos, Follower stores a relationship
between users

e Three different VC apps make use of these MPs

- VCs can be written after the fact w/o permission of MP author
- LIO ensures they cannot misuse data

24/30

What policy looks like

-- Set policy for "users" collection:
collection "users" $ do
-— Set collection label:

Document:

{ user: alice (E],D)

@ email: | alice@... (I, M)
friends: | bob, joe,... K([,)

access $ do
readers ==> anybody
writers ==> anybody
-- Declare user field as a key:
field "user" key
-- Set document label, given document doc:
document $ \doc -> do
readers ==> anybody
writers ==> ("user" ‘from‘ doc) \/ _Follower
-- Set email field label, given document doc:
field "email" $ labeled $ \doc -> do
readers ==> ("user" ‘from‘ doc)
\/ fromList ("friends" ‘from‘ doc)
\/ _Follower
writers ==> anybody

Labeled by: [] Collection [[] Document [l Field

25/30

LearnByHacking

Y Learn By Hacking

@ | 8 https://www.learnbyhacking.org

Learn Create Share

LearnByHacking

[Learn By Hacking
& € @ https://www.learnbyhacking.org/posts/516dc8ba13c61405cb000000

& main = print (mySimpleTree :: Tree Integer)

<user-input>:6:15:
Couldn't match type "Int' with “Integer’
Expected type: Tree Integer
Actual type: Tree Int
In the first argument of “print', namely
" (mySimpleTree :: Tree Integer)'
In the expression: print (mySimpleTree :: Tree Integer)
In an equation for ‘main':

main = print (mySimpleTree :: Tree Integer)
whoops, Haskell doesn't let us implicitly cast things. Let's try again:
> main = print mySimpleTree

Node (Leaf 1) (Node (Leaf 2) (Leaf 3))

26/30

@ Background: Information flow control

@ HiStar
® IFC for Haskell

@ Experience

27/30

Three usability data points

1. One high-school student hired at Stanford
2. Four (screened) Brandeis students in Lincoln labs evaluation study
3. Four Stanford students (hired blind, no experience necessary)

[Disclaimer: all programmers compensated in dollars.]

28/30

A few highly subjective conclusions

+ Teaching people Haskell much easier than deploying a new OS

- Libraries, stack overflow, IRC...community has critical mass
- People’s willingness to learn new languages may be increasing

+ People generally had an easy time writing VCs

- Which is good because VCs are larger and more numerous than MPs
- Students struggled with policy

- The policy DSL was introduced later, and helped some

- It doesn’t work to prototype an app, then add policy

e We've come a long way since HiStar’s labels, which could mystify
even senior systems researchers

- E.g., Stanford team built task management system with rich policies
- #1 challenge is enabling more people to understand, express policy

29/30

http://www.scs.stanford.edu/

30/30

	Background: Information flow control
	HiStar
	IFC for Haskell
	Experience

