
Security and the Average Programmer

Silas Boyd-Wickizer, Pablo Buiras*, Daniel Giffin, Stefan Heule,
Eddie Kohler, Amit Levy, David Mazières, John Mitchell,
Alejandro Russo*, Amy Shen, Deian Stefan, David Terei,

Edward Yang, and Nickolai Zeldovich

Stanford and *Chalmers

Tuesday, April 15, 2014



Software vulnerabilities are everywhere

• High-profile software (nginx, Symantec)
• But also web applications (Paymaxx)

- One-off designs receive little outside
scrutiny

- See a wide range of programmer abilities
(unlike core components such as kernels)

• Also embedded systems (fridge, TV)

• “Internet of things” ?≈ remote exploit of
things

• Fewer and fewer settings where software
security doesn’t matter

2 / 30



The only solution

The median programmer must build secure systems.
• Sadly, I won’t tell you how to make this happen today, but
• Information flow control (IFC) has made progress towards the goal

3 / 30



Steps towards the goal

• Allow experts to incorporate third-party code into secure systems
- Achievable if you are willing to use a new operating system (HiStar)
- Compatibility issues make it hard to deploy a new OS

• Allow experts to manage non-experts building secure systems
- Possible if you teach people a new language (Haskell)
- Ideas may be transferable to mainstream languages (e.g.,
JavaScript)

• Allow anyone to hire non-experts to build secure systems
- This is the big open problem
- IFC is a plausible approach, and we have some experience pointing
to the remaining difficulties

4 / 30



Outline

1 Background: Information flow control

2 HiStar

3 IFC for Haskell

4 Experience

5 / 30



Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Symantec AV (deployed on 200M machines) had remote exploit
• Can the OS provide security despite Symantec’s programmers?

- Prevent leaking contents of private files to network
- Prevent tampering with contents of files

6 / 30



Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can write your private data to network
• Prevent scanner from invoking any system call that might send a
network message?

6 / 30



Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can send private data to update daemon
• Update daemon sends data over network

- Can cleverly disguise secrets in order/timing of update requests

• Block IPC & shared memory system calls in scanner?

6 / 30



Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can write data to world-readable file in /tmp

• Update daemon later reads and discloses file
• Prevent update daemon from using /tmp?

6 / 30



Example: Anti-virus software

AV
Helper

AV
Scanner

User
TTY

Update
Daemon

/tmp User Data Virus DB Network

• Scanner can acquire read locks on virus database
- Encode secret user data by locking various ranges of file

• Update daemon decodes data by detecting locks
- Discloses private data over the network

• Have trusted software copy virus DB for scanner?
6 / 30



The list goes on

• Scanner can call setproctitle with user data
- Update daemon extracts data by running ps

• Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

• Scanner can relay data through another process
- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data

• Disclose data by modulating free disk space
• Can we ever convince ourselves we’ve covered all possible
communication channels?
- Not without a more systematic approach to the problem

7 / 30



Background: Information flow control

AV
Scanner User Data

LS

LU
?LU v LSLS v LU v LS

• Every piece of data in the system has a label
• Every process/thread/subject has a label
• Labels are partially ordered by v ("can flow to")
• Example: Scanner (labeled LS ) accesses user file (labeled LU )

- Check permission by comparing LS and LU

- File read? Information flows from file to scanner. Require: LU v LS .
- File write? Information flows in both directions. Require: LU v LS
and LS v LU .

8 / 30



Background: Information flow control

AV
Scanner User Data

LS

LU
?LU v LSLS v LU v LS

• Every piece of data in the system has a label
• Every process/thread/subject has a label
• Labels are partially ordered by v ("can flow to")
• Example: Scanner (labeled LS ) accesses user file (labeled LU )

- Check permission by comparing LS and LU

- File read? Information flows from file to scanner. Require: LU v LS .
- File write? Information flows in both directions. Require: LU v LS
and LS v LU .

8 / 30



Background: Information flow control

AV
Scanner User Data

LS

LU
?LU v LSLS v LU v LS

• Every piece of data in the system has a label
• Every process/thread/subject has a label
• Labels are partially ordered by v ("can flow to")
• Example: Scanner (labeled LS ) accesses user file (labeled LU )

- Check permission by comparing LS and LU

- File read? Information flows from file to scanner. Require: LU v LS .
- File write? Information flows in both directions. Require: LU v LS
and LS v LU .

8 / 30



v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

9 / 30



v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

• Suppose untrustworthy software labeled Lbug reads user file
- Must have LU v Lbug

- But since LU 6v Lnet, it follows that Lbug 6v Lnet.
9 / 30



v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

• Suppose untrustworthy software labeled Lbug reads user file
- Must have LU v Lbug

- But since LU 6v Lnet, it follows that Lbug 6v Lnet.
9 / 30



v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

• Suppose untrustworthy software labeled Lbug reads user file
- Must have LU v Lbug

- But since LU 6v Lnet, it follows that Lbug 6v Lnet.
9 / 30



v is transitive

User data
LU

Internet

Lnet

LbugLU 6v Lnet

LU v
Lbug

Lbug 6v Lnet
Lbug v Lnet

LU 6v Lbug

• Transitivity makes it easier to reason about security
• Example: Label user data so it cannot flow to Internet (LU 6v Lnet)

- Policy holds regardless of what other software does
. . . so you don’t care what the programmer did

• Conversely, a process that can write to network cannot read the file

9 / 30



Traditionally labels form static lattice

〈unclassified, ∅〉

〈secret, ∅〉

〈top-secret, ∅〉

〈top-secret, {Nuclear,Crypto}〉

〈secret, {Nuclear}〉 〈secret, {Crypto}〉

〈top-secret, {Nuclear}〉 〈top-secret, {Crypto}〉

L1 L2
means L1 v L2

10 / 30



Dynamic labels can express per-user policy

L∅

LA w
LB

v

LAB

v w

• E.g., use L∅ for public data, LA for user A’s private data
• If new user B joins web site, introduce new label LB for his data

- A and B cannot read each other’s private data
• Mix A’s and B’s private data? Need label LAB = LA t LB

• But what if A wants to make her data public?
11 / 30



Dynamic labels can express per-user policy

L∅

LA w
LB

v

LAB

v w

• E.g., use L∅ for public data, LA for user A’s private data
• If new user B joins web site, introduce new label LB for his data

- A and B cannot read each other’s private data
• Mix A’s and B’s private data? Need label LAB = LA t LB

• But what if A wants to make her data public?
11 / 30



Dynamic labels can express per-user policy

L∅

LA w
LB

v

LAB

v w

• E.g., use L∅ for public data, LA for user A’s private data
• If new user B joins web site, introduce new label LB for his data

- A and B cannot read each other’s private data
• Mix A’s and B’s private data? Need label LAB = LA t LB

• But what if A wants to make her data public?
11 / 30



Decentralized information flow control [Myers]

Sanitize

Lbug

p
User data

LU

Internet

Lnet

Lbug
LU v

Lbug

Lbug 6v Lnet

Lbug vp Lnet

• Privilege p lets one bypass restrictions of Lbug (represented )

• Exercising p loosens label requirements to a pre-order, vp

- Since Lbug vp Lnet, Sanitize process can send result to network

• Idea: Set labels so you understand all use of relevant privileges

12 / 30



Decentralized information flow control [Myers]

Sanitize

Lbug

p
User data

LU

Internet

Lnet

Lbug
LU v

Lbug

Lbug 6v Lnet

Lbug vp Lnet

• Privilege p lets one bypass restrictions of Lbug (represented )

• Exercising p loosens label requirements to a pre-order, vp

- Since Lbug vp Lnet, Sanitize process can send result to network

• Idea: Set labels so you understand all use of relevant privileges

12 / 30



Decentralized information flow control [Myers]

Sanitize

Lbug

p
User data

LU

Internet

Lnet

Lbug
LU v

Lbug

Lbug 6v Lnet

Lbug vp Lnet

• Privilege p lets one bypass restrictions of Lbug (represented )

• Exercising p loosens label requirements to a pre-order, vp

- Since Lbug vp Lnet, Sanitize process can send result to network

• Idea: Set labels so you understand all use of relevant privileges

12 / 30



Example privileges

• Consider again the simple two user lattice
• Let a be user A’s privileges
• User A should be allowed to make her own data public
• She can because LA va L∅ and LAB va LB

13 / 30



Example privileges

Equivalent
under

Equivalent
under

• Consider again the simple two user lattice
• Let a be user A’s privileges
• User A should be allowed to make her own data public
• She can because LA va L∅ and LAB va LB

13 / 30



Outline

1 Background: Information flow control

2 HiStar

3 IFC for Haskell

4 Experience

14 / 30



HiStar OS

• Clean-slate OS that makes all information flow explicit
• Key feature: partial declassification privileges

- All other security features built on partial declassification
• Example: user IDs

- Each uid implemented as two privileges, one for reading and one for
writing user’s files

- User’s login shell receives privileges after authentication
• Example: web security

- Each web user is associated with unique privileges
- Ensures Paymaxx-style dump-the-database attacks not possible

15 / 30



HiStar architecture

Hardware

POSIX

Security checks

AV
he

lp
er

Sc
an

ne
r

U
pd

at
e

Linux
Hardware

Security checks

PO
SI
X

PO
SI
X

PO
SI
X

AV
he

lp
er

Sc
an

ne
r

U
pd

at
e

HiStar

• Kernel provides six simple object types
- Simple enough that information flow is unambiguous

• Layer POSIX API as untrusted library on top of kernel
16 / 30



Web server

17 / 30



What we learned from HiStar

• Nickolai Zeldovich can secure 1,000,000+ lines of third-party code
- But he is not the median programmer to say the least

• System-wide egalitarian access control is practical
• Dynamic IFC enforcement can avoid implicit flows

- Dynamic IFC was previously through to be inherently insecure

18 / 30



Outline

1 Background: Information flow control

2 HiStar

3 IFC for Haskell

4 Experience

19 / 30



Why Haskell?

• Haskell is a pure functional langauge
- Functions without side effects do not leak data

• Impure computations have type IO a for some return type a

- Haskell’s “Monad” support lets one to introduce other types like IO

• Idea: introduce a new labeled IO type, LIO, as substitute for IO

- Internally, LIO makes use of IO actions, but only after enforcing IFC
- Type safety and abstraction prevent LIO code from executing raw IO

• Safe Haskell compiler feature enforces type safety & abstraction
- Privileged symbols (ending . . .TCB) are inaccessible from safe code

20 / 30



Example: Wrapping IO abstractions

• Wrap IO abstractions into generic labeled objects
- blessTCB transforms an IO function into an LIO action on a labeled
version of the same type

- LIO version checks labels before performing action
• E.g., Haskell MVar abstraction provides mutable variables

- LIO version called LMVar merely a wrapped MVar

{-# LANGUAGE Trustworthy #-}
...

type LMVar l a = LObj l (MVar a)

takeLMVar :: Label l => LMVar l a -> LIO l a
takeLMVar = blessTCB "takeLMVar" takeMVar

putLMVar :: Label l => LMVar l a -> a -> LIO l ()
putLMVar = blessTCB "putLMVar" putMVar

...

21 / 30



Hails: An LIO web framework

• Introduces Model-Policy-View-Controller paradigm
• A Hails server comprises two types of software package

- VCs contain View and Controller logic
- MPs contain Model and Policy logic

• Policies enforced using LIO
- Also isolate spawned programs with Linux namespaces

22 / 30



GitStar

• Public GitHub-like service supporting private projects
23 / 30



Simplified GitStar architecture

Code Viewer

S
e
rv

e
rView

Controller

View

Controller

View

Controller

Git-Blog

S
e
rv

e
r View

Controller

View

Controller

View

Controller

Bookmark

S
e
rv

e
r View

Controller

View

Controller

View

Controller

FollowerGitStar

DBI DBI

ViewView

ControllerControllerPolicy

Model

Browser

Splint

ViewView

ControllerControllerPolicy

Model

• Two MPs: GitStar hosts git repos, Follower stores a relationship
between users

• Three different VC apps make use of these MPs
- VCs can be written after the fact w/o permission of MP author
- LIO ensures they cannot misuse data

24 / 30



What policy looks like

-- Set policy for "users" collection:
collection "users" $ do

-- Set collection label:
access $ do

readers ==> anybody
writers ==> anybody

-- Declare user field as a key:
field "user" key
-- Set document label, given document doc:
document $ \doc -> do

readers ==> anybody
writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:
field "email" $ labeled $ \doc -> do

readers ==> ("user" ‘from‘ doc)
\/ fromList ("friends" ‘from‘ doc)
\/ _Follower

writers ==> anybody

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,

25 / 30



LearnByHacking

26 / 30



LearnByHacking

26 / 30



Outline

1 Background: Information flow control

2 HiStar

3 IFC for Haskell

4 Experience

27 / 30



Three usability data points

1. One high-school student hired at Stanford
2. Four (screened) Brandeis students in Lincoln labs evaluation study
3. Four Stanford students (hired blind, no experience necessary)

[Disclaimer: all programmers compensated in dollars.]

28 / 30



A few highly subjective conclusions

+ Teaching people Haskell much easier than deploying a new OS
- Libraries, stack overflow, IRC. . . community has critical mass
- People’s willingness to learn new languages may be increasing

+ People generally had an easy time writing VCs
- Which is good because VCs are larger and more numerous than MPs

- Students struggled with policy
- The policy DSL was introduced later, and helped some

- It doesn’t work to prototype an app, then add policy

• We’ve come a long way since HiStar’s labels, which could mystify
even senior systems researchers
- E.g., Stanford team built task management system with rich policies
- #1 challenge is enabling more people to understand, express policy

29 / 30



Questions

Secure

Computer

Systems

http://www.scs.stanford.edu/

30 / 30


	Background: Information flow control
	HiStar
	IFC for Haskell
	Experience

